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Stationary three-dimensional inviscid flow fields past bodies with a blunt or pointed 
nose are calculated for supersonic Mach numbers. The equations of motion are discretized 
such that it is possible to calculate the intensity and location of embedded shocks with 
high accuracy. For this purpose, the dependent variables of the system of differential 
equations must be used in conservative form. However, we do not apply the divergence 
form of the system of differential equations, but a vector-matrix form which allows us to 
solve the finite-difference equations by the use of the “progonka” process. By means of 
one-dimensional nonstationary examples, the accuracy which can be gained in the treat- 
ment of embedded shocks is tested using either conservative or nonconservative formula- 
tions of the equations of motion. It is seen that surprisingly good results can be achieved 
with the formulation chosen in this paper. Solutions of some selected flow fields are given 
which contain compression and expansion zones as well as embedded shocks. A com- 
parison with experimental data, insofar as they are available, shows very good agreement. 

1. INTRODUCTION 

Today, we can choose among a considerable number of discrete numerical methods 
(finite-difference methods) for calculating three-dimensional inviscid supersonic flow 
fields. The use of integral and characteristics methods for three-dimensional problems 
seems, on the one hand, to involve too much effort and, on the other hand, to have 
limited application. As far as the author knows, none of these methods has been 
employed for the treatment of general three-dimensional inviscid flow fields with 
embedded shocks. The system of partial differential equations for these flows is 
almost exclusively solved by means of finite-difference algorithms. 

A great variety of difference algorithms exists, and very frequently they are adjusted 
to the specific problem to be treated. When supersonic flows pass around blunt or 
pointed bodies, subsonic regions and embedded shocks with unknown shape and 
location can occur in the flow field to be calculated as a function of the Mach number 
M, , the angle of attack LY, and the body geometry. Besides the treatment of the 
bow shock, these are the principal difficulties which must be solved by the difference 
method used in each case. 
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If a flow passes around a blunt body with Mach numbers M, > 1, a subsonic 
region arises between body contour and detached shock wave (bow shock), which 
downstream becomes a supersonic region again. If we assume that the flow is station- 
ary, then the differential equations which describe the subsonic region are of elliptic 
type and we obtain a boundary-value problem. However, since the boundaries are not 
completely known, e.g., the bow shock is to be determined during the calculation 
process, the solution of the boundary-value problem is difficult. References [I, 21 
show a possible method of solving the above problem, known as the “inverse method.” 
In this method, the associated body contour is calculated for a given shock contour 
in an iterative process. This is not very satisfactory, however, as it is very difficult 
to calculate the flow around an arbitrary body shape in this way. But if we take 
nonstationary differential equations and consider the time-asymptotic behavior at 
stationary boundary conditions as the desired solution, the differential equation 
system is of hyperbolic type. The initial boundary-value problem that arises contains 
the shock contour function as an unknown variable. A disadvantageous effect is 
exerted by the fourth independent variable-the time coordinate t-which substan- 
tially increases the formulation effort and the computing time. Nevertheless, the time- 
dependent method has found general acceptance, as can be seen from [3-71. Localizing 
the bow shock is another problem, which in all recent papers [3-141 has been solved 
by means of a coordinate transformation which describes the bow shock and body 
contour by coordinate surfaces [ = const. Further difficulties are associated with 
the treatment of embedded shocks. As is known, the governing equations can be 
written in strong conservative, weak conservative [I 5, 161, and nonconservative form. 
With the equations in nonconservative form, embedded shocks can only be computed 
very inaccurately if no additional effort is spent. In [17] embedded shocks, whose point 
of generation is given by the body geometry (jump in the first or second derivativeof 
the countour function), are calculated by means of the “shock-fitting” technique [I 81. 
If the body contour function does not provide any information on the generation of 
an embedded shock, the shock is determined [17] by a combination of characteristics 
and Rankine-Hugoniot equations. Another possible way of computing embedded 
shocks with nonconservative equations is to introduce artificial dissipation terms [8]. 
However, since the required quantity of the artificial dissipation terms depends on 
the intensity of the shock, the solution in the shock-free flow field may be distorted 
accordingly. 

Lax shows [19] that shocks can be calculated with a conservative formulation of 
the equations of motion. Departing from the system of equations in [19], shocks 
which are embedded in the flow field can be determined without any special treatment 
(shock-capturing technique), as is demonstrated in [20, 211. 

In the region of shock formation the flow field variables show oscillations which 
can be attenuated by the introduction of appropriate artificial dissipation terms. In 
[22], the exact location of the shock is found by means of an additional interpolation 
prescription. For three-dimensional problems, Kutler [23-251 has applied the shock- 
capturing technique with great success. 

Another very important problem is the treatment of the boundary conditions and/or 
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the calculation of the flow variables at the boundary. In the initial boundary-value 
problem here, the specific solution sought is determined by the boundary values-in 
addition to the initial values. Therefore the accuracy of the solution will depend just 
on the accuracy to which the boundary values can be calculated. A distinction is 
made between boundaries which are permeable (bow shock) or impermeable (body 
surface) for the flow medium. In [3, 5, 8, 141 the calculation of the flow variables on 
the boundaries is carried out with the same difference algorithm used to determine the 
variables in the field. This calculation is feasible, since the equations of the boundary 
conditions are contained in the solution algorithm which simultaneously computes 
the field variables along a line from the body to the bow shock. In the Russian 
literature, this method is called the “progonka” process. With it, all variables, in the 
field and on the boundaries, are computed with the same accuracy. A variety of 
further ways of treating the boundary conditions is discussed in 123, 261. 

All these procedures, such as the reflection technique, the wave corrector technique 
[26], or the use of one-sided difference approximations, have in common the fact that 
the calculation of the flow variables on the boundaries and the calculation of those in 
the field are done with different accuracy. For example, the truncation errors of 
higher order are of different sizes, depending on whether central or one-sided differ- 
ence approximations are used. In [7], a large system of interpolations and extrapola- 
tions is required to calculate the bow shock location, which of course impairs the 
accuracy. 

To achieve as high an accuracy as possible, the flow variables on the boundaries 
and in the field are calculated in the present method by means of the progonka 
process. Furthermore, the equations of motion with dependent variables in conserva- 
tive formulation are discretized. By the use of this formulation, embedded shocks 
are computed with satisfactory accuracy. 

2. A CONSERVATIVE FORMULATION OF THE EQUATIONS OF MOTION 

The system of the equations of motion for inviscid three-dimensional flows may be 
written in conservative or in nonconservative formulation. In [15, 161, a further 
distinction is made between strong and weak conservative formulations. If we use the 
nonconservative formulation, the five governing equations (continuity equation, 
three momentum equations, and energy equation) may be written in a vector-matrix 
form such as 

[ $+A&+B++C+] x+fz=o, 2 3 
(2.1) 

where XT = (u, U, w, p, p) is the solution vector, qi are arbitrary coordinates, 
H represents curvature terms, and A, B, and C are matrices. 

If, for integrating the equations of motion, we use the implicit finite-difference 
equations employed in [3, 5, 8, 141 and solve these by means of the progonka process, 
the system of partial differential equations must be written in the form of Eq. (2.1) or 
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an equivalent vector-matrix form. This means that the differential operators are all 
applied to the same solution vector (X in Eq. (2.1)). The conservative formulation 
for arbitrary curvilinear coordinates qi , 

g+g+$+g+H=o, 
2 3 

(2.2) 

does not fulfill this condition. In Eq. (2.2) CT, E, F, G, and H depend on the selected 
coordinate system and on the desired formulation of the velocity components. 

The system of equations (2.2) can be transformed as follows, 

where J(U), K(U), and L(U) are Jacobi matrices with the element J1, , e.g., given by 

Jo, = ae,lau, . (2.4) 

The formulation of the equations of motion (2.3) now fulfills two requirements: 

1. The dependent variables are conservative; 
2. The differential operators are all applied to the same solution vector U 

(necessary provision for the application of the progonka process). 

The conservative system 

%+ aq 
a(w) u) + a(w) w + w(u) u) + H(u) = o 

a% aq3 7 
I 

(2.5) 

coincides with the equation system (2.3) [27], as is demonstrated by means of an 
example. 

2.1. Remarks on the Conservative Formulation of the Equations of Motion 

The one-dimensional nonstationary Eulerian equations are considered. In non- 
conservative form with the dependent variables, u, p and p, these read 

[ -g.A&]X=O; A = (‘5 6 I); X= (;). (2.6) 

The conservative formulation yields 

m 

au ~ __ = 0; E(U) = at 
+ aEcu) 

ax 

i i 

$+, ; u= 

(e + p) 7 

P 

i 1. m = pu 

e=-&+J$ 

(2.7) 
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Using the homogeneity relation according to Euler [28] there is also 

J(U) = 

0 I 
I 1 

-(3 - y) ??I2 
I 
I (3 - 

2P2 
I 74 7 

-)/ 7 + (Y - 1) L!$i $5 - 3(y 2 *) ET 
P2 

g+ J(U)g=O 

%+ ax 
a(J(u) u) = o 

(2.8) 

(2.9) 

If we regard, for instance, the momentum equations from Eqs. (2.7), (2.8), and (2.9) 

(2.R) 

(2.8i) 

-$ p + (3 - r) 7 m + (y - 1) e) = 0, (2.9i) 

we see that Eq. (2.7i) and Eq. (2.9i) are indeed identical. Hence we can conjecture 
that the character of Eq. (2.8) and/or Eq. (2.8i) is also almost conservative, since 
(i?J(U)/ax)U = 0. By the use of an example, which has already been calculated by 
Lax [19] with Eq. (2.7), it is shown that the calculation of discontinuities with Eq. (2.8) 
supplies results of at least the same quality as with Eq. (2.7) (see Figs. 1 and 2). 

The nonconservative formulation, Eq. (2.6), however, represents the location and 
intensity of the shock in a distorted way. According to Lax, the time derivatives are 
replaced by the forward difference 

with 

q- Q ( 1 --+ f;" -fT 
at k At + O(At) 

3Y = HfZ+,l + fL), 

while the derivatives in the x-direction are approximated by the central difference 

f:+l -fk 
2Ax + am. 

This example has for t = 0 the initial data p1 = 50, pl = 50, u1 = 2 for x < 0 and 
p7 = 0, pr = 10, u, = 0 for x > 0 with y = 1.5 and At/Ax = 0.25. After n = 49 
(Fig. 1) and n = 99 (Fig. 2) time steps the density characteristics calculated with 
Eq. (2.8) are closer to the exact solution than those of Eq. (2.7). The plots of the 
density functions in Fig. 1 (n = 49) have been smoothed after finishing the calculation. 
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FIG. 1. Comparisons between the shock solutions of three different formulations for the Eulerian 
equations; n = 49; Lax algorithm. 

FIG. 2. Comparisons between the shock solutions of three different formulations for the Eulerian 
equations; n = 99; Lax algorithm. 
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Figure 2 shows the nonsmoothed plots for n = 99. The same result from a qualitative 
point of view is reached with the implicit difference scheme of Crank-Nicholson 
(Figs. 3 and 4). Here both the temporal and the spatial derivatives are substituted 
by central differences, 

and 

FIG. 5. The areas of calculation in the cases of (a) blunt body and (b) pointed body. 
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Since the difference equations are solved iteratively, the density function in the region 
of the shock is smeared to a greater extent than displayed in Figs. 1 and 2. No further 
smoothing was necessary. 

From these and other calculations serving as examples, the conclusion is drawn 
that calculation of shock waves embedded in the flow field with the equation system in 
vector-matrix form, where the dependent variables are in conservative formulation, 
Eq. (2.3), gives at least the same degree of accuracy as calculations by means of the 
system of equations in divergence form, Eq. (2.2). 

2.2. A Complete Representation of the Equations for Three-Dimensional Flow Fields 

In the present paper, the three-dimensional stationary purely supersonic flow field 
which occurs in the regions Q is calculated at bodies (Fig. 5). Calculation of embedded 
subsonic fields, as they arise in the stagnation zone of a blunt body or behind embedded 
strong shock waves, can be performed with the difference methods [3, 5, 7, 121 
(initial procedure). These are based on the nonstationary three-dimensional Eulerian 
equations, and in the case of stationary boundary conditions the time asymptotes are 
considered as the desired solutions. 

In cylindrical coordinates z, r and y the stationary equation system (2.3) has the 
form 

[ J(U) & i- K(U) -g + uw +] u + H(U) = 0. (2.10) 

(The use of the cylindrical coordinates does not imply that the body must necessarily 
be a body of revolution.) 

I I begin of the purly supersonic flow field 

discretisation point 

FIG. 6. The coordinate system x, 5, 9; location of grid and discretisation points along a ray. 
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4 , i, , i, , are the basis vectors of the 

cylindrical coordinate system. 

(2.11) 
(Contim4ed) 

2.3. Coordinate System 

In more recent papers [3-12, 14,24,25], shock and body contours are transformed 
in such a way that they can be represented by smooth plane surfaces (Fig. 6) which 
bound the computational domain generated by the transformation 

z = x, 

r = G(x, 8) + FWx, 8) - G(x, 8)), 
v = 8. 

(2.12) 

The function &z, r, 9) must fulfill the condition 5 = 0 on the body and 5 = 1 on the 
shock. The exponent n can be regarded as the regulation factor for the point density 
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in the computational network. If n > 1, the grid points near the body increase in 
density, while for n < 1 the point density in the vicinity of the bow shock becomes 
larger. Transformation of the system of equations (2.10) to the new calculation coordi- 
nates requires that the coordinate derivatives 6, , .$, , and E, be known. By means of 
the Jacobian 0” = a(z, r, q)/a(x, 8, 8) and the relation o”-l = 8(x, [, $)/a(~, r, y) 

we obtain, unless 0” becomes singular, 

& = -r,Irc ; 65 = l/r, ; L = -r&f ; rE = n&“(F - G). (2.13) 

Remark: At the position 4 = 0,o” becomes singular for IZ # 1. For n > 1, d” = rc = 
0. This means that an infinitesimal volume element in the z, r, v-coordinate system 
collapses into a single point in the x, [, a-system. Nevertheless, in every small neighbor- 
hood of 5 = 0 the mapping is unique. b = rf appears in the transformations (2.13) 
as a factor. These transformations are employed only at ,$ = 0 in Eq. (2.14), but this 
formula reduces to 

4, + 4, + U/r) NT, -ur, + v - (l/r) wr* 
” * n = [fz2 + f,” + (l/P) em2]1/2 = [r2 + 1 + (l/P) ra2]li2 = O 

since the factor re: cancels out. 

2.4. Boundary Conditions 

The sole requirement on the body is its impermeability for the gas 

v*n=o, (2.14) 

where n G normal vector of the body surface. The boundary conditions on the shock 
are given by the generalized Rankine-Hugoniot equations 

pv,l = pmvnm , CA = v . A, 

p + pccvn&$ = pcz + &JJL , 

I1 + $12 = h, + v,2,/2, 
vXh=v,Xh. 

(2.15) 

The index co denotes the freestream quantities, h G normal vector of the bow shock 
contour. 

The last equation of Eqs. (2.15) is a vector equation with two linearly independent 
components which express the conservation of the velocity component in the tangen- 
tial plane of the shock. 

2.5. Transformed System of Equation 

In the coordinates (x, 5, a)), the system of equation (2.10) assumes the form 

(2.16) 
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with 

The boundary conditions are formulated in the dependent variables p, m, e. Hence 
on the body we obtain from Eq. (2.14) 

md, + m24, + m3(llr) 4, = 0. (2.17) 

Here the fact was used that the coordinate surface 5 = 0 just represents the body 
contour and thus the body normal is given by 

nT = 1422 + CC2 + (l/r2) ,&2]1/2 E=O’ 

Since the bow shock, too, is a coordinate surface t = 1, the boundary conditions 
(2.15) can be written as a function of this coordinate. 

(y - 1) (e - e, - i (“;- - *)) 
P 

= F ($ - $)> 

y $2L! 
i Pm ( 

m2 
2 1 a,2 1 1 - - 2 p2 J$ =----- 

1) 2 8” ( pm2 1 fJ2 ’ 

1 
-(m2:5, - 
P 

m3&) = $ (m2;, i E, - m3:dtr)r 

where h = (yp/(y - l)p), /3 = [tz2 + tr2 + (l/r2) Sm2]1/2. In the system of equations 
(2.18), apart from the conservative variables p, m, and e, the coordinate derivatives 
5, 9 5, , and & are unknown, too. Equations (2.12) and (2.13) show that at a given 
body contour an additional variable-the function of the shock contour F-occurs. 
The missing equation is supplied by the solution method (progonka process) described 
in [3, 5, 8, 141. 

3. FINITE-DIFFERENCE EQUATIONS 

The equation system (2.16) is approximated by the finite-difference equations accord- 
ing to Babenko et al. [14,8]. In the computational domain bounded by flat surfaces, an 
orthogonal difference mesh with the mesh intervals Ax = T, A[ = h, , A9 = h, is 
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introduced. If M, L indicate the numbers of the mesh intervals in the 5, t9 directions, 
then 

n 
x*l = C + + g; &,, = mh, ; 8, = lh, ; m=l . ..&f. I= 1 “‘L, 

i=l 

The solution vector at the point xn, 5,) 6, is denoted by U(x”, &,, , &) G Uz,, . For 
reasons of clear presentation of the difference equations, the transformation operators 

are introduced. Hence the finite-difference operators, which approximate the differen- 
tial operators of Eq. (2.16) read as follows [8]: 

---f A,,j = (P, + I) (Pi - z - F (Pz - 21+ PC?), 

h1 ($):y:“;L - A,,j = tp, - N~P,j + PO, 

-+ A,,$ = (P, + z)(P, - P,~)(c& + ,!Jz). 

The parameters u1 , Cu, and p are always positive and it is required that ol + b = 1. 
For reasons of stability there must be iy > fi [5, 141. If Eq. (3.3) is substituted into 
Eq. (2.16), we obtain a system of five finite-difference equations 

WK~~:;!,A.,j+l + wWX%!v4~,~+~ 

+ +c2L(U)~~:,ii:,“l,A,*{] lJ:*, + 27H(u);;$$ = 0. (3.4) 

From the system of equations (3.4) it is seen that the discretization is performed on 
intermediate grid points for the &direction, and with averaged iteration steps for the 
x-(hyperbolic) direction. The iteration in the x-direction (indexj) becomes necessary 
because of the quasi-linearity of the initial equation system and the implicit character 
of the finite-difference equations. Along a ray (Fig. 6), m = 0, l,..., M, 5M equations 
of the system (3.4) are supplied. In addition there are five equations (2.18) for the 
boundary conditions on the bow shock and one equation (2.17) for the boundary 
condition on the body. These are opposed by 5(M + 1) dependent variables and the 
function F of the bow shock as unknowns sothat along a ray the system of equation is 
closed. 
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The solution of the implicit finite-difference equation system (3.4), including the 
boundary conditions (2.17) and (2.18), requires a particular effort which is accounted 
for by the application of the progonka process. 

4. SOLUTION METHOD 

References [3, 5, 8, 12, 141 describe in great detail the application of the progonka 
process to the finite-difference approximations of systems of differential equations 
for three-dimensional stationary or nonstationary formulations with the dependent 
variables being nonconservative. The progonka process in the form used here can be 
applied logically only if the domain of calculation is bounded in the &direction by a 
wall (5 = 0), which can possibly be moved, and by a shock (5 = 1). If, as in this case, 
the dependent variables are used in conservative formulation, nothing of the principles 
of the progonka process is changed, but it seems convenient to indicate-because of 
the enormous algebraic effort-the quantities required for the individual calculation 
methods. 

4.1. Forward Computation 

The computation starts with the use of Eq. (2.17) for the boundary condition on the 
body which is written in the form 

pmu;y+l’ = g, , m = 0 corresponds to the mesh point of the body, 
(4.1) 

PO = (0, 5, > it,, (l/r) 5, 7 fx’j’, go = 0. 

If the equation system (3.4) is transformed, 

s~4&2jJyzrzlj,~l) + t~rz~~z,)Jyz?z,(j+l) = f;?i=l'i,z,', ) 

where 
(4.2) 

f ;:$,i = [J<~~;~:,~;z (p, + I)(1 + (W$/4)(P, - 21 + p,‘)) 
- @K,K( r;i>nmt+(:‘:22;1 (PI - 1) - (‘42) ~(~>~%:~!t &il u:.l 

- ~TH(U);;+(:‘:;!~ , 
-- 

S = J(u) + 2(uK,K(u), t = J(u) - 26K,K(U), 

one obtains, by use of Eq. (4.1) for 0 < m < M, the recursion coefficients pm+* , 
g,+l [8, 141 to (for reasons of clarity the indices n, j, I are omitted) 

where 

Pm(7~)m+1!2 

pm+1 = II /47dn+1i2 II ’ 

(4.3) 

7 m+l/~ = (t-‘h,,+l,2, &+,,, = det I tm+1j2 I. 
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To prevent the recursion coefficients (4.3) from growing beyond all measure, they are 
limited by means of the maximum norm 

I I P?d~S)m+ 1’2 ~1 = II CL,+.~ 1~ = max I pi;m+l I, i = l,..., 5. 

Appendix A lists the elements of the matrices tm+li2 , s,+~/, as well as those of T,,.~,‘~ 
for the equation system used here. 

4.2. Solution of the System of Finite-DifSerence Equations at the Shock 

On the basis of the values g, , p0 on the body, the values of g, , pm can be calculated 
on all mesh points along a coordinate line x = const until the shock. For calculation 
of the six unknowns on the shock, p, m, e, and F, the five Hugoniot equations (2.18), 
and the equation p ,+, U M = g, (m = M corresponds to a mesh point on the 6 = 1 line) 
are available. This system of transcendental equations can now be solved by itera- 
tion. Reference [8] provides detailed information on the iteration method used so that 
in this place only the equations to be iterated are indicated. If the relation 

g, = plpz + p2ml;, + p3m2;, + p4m3,, + p5em 

is introduced, the system of equations 

q&$, jc-l = -F$l’) = 

p’” = ty + 1) ha2 
ty - l)[y,B2t2e,p, - mm21 + aa21 (4.4) 

P= 

(S corresponds to the number of iterations), 

can be used to determine by iteration the derivative of the shock contour function F 
in the x-direction. 01, and /3 are calculated for 6 = 1 according to Eq. (2.18). Further- 
more, [, = -FJrc , .$, = l/r, , and (I/r) f, = -F,/r,F. rE may be canceled out of 
the system (2.18). The expression (F,JF)T”j’ is approximated by (1/2h,F,“+‘j’) 
[F;&(j) - FL;(j)]. From (4.4) one obtains FLf:” = F.$(i+l) and pts) = p& , from 
which the remaining unknowns can be calculated: 

(4.5) 

FT+(j+l) = FL” + T(GF;.;(~~” 1 BF,“:,), 
4bf = (%/82)1~ - PdPPl. 
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4.3. Backward Computation 

When the dependent variables are determined at m = M (bow shock), then the 
solution vectors UGZyt”, V+(j+l’ M-2,1 ?***9 I’Y+(~+~’ are calculated by the use of the first 0,l 

four components of Eq. (4.2) and Eq. (4.1). Practical computation has shown that 
during the solution of Eqs. (4.1) and (4.2) undetermined. terms of the type O/O can 
appear, depending on angle of attack and body curvature. Appendix B presents a 
system of equations which avoids these difficulties. 

Now the system of equations for calculating the flow variables and the shock contour 
along a ray is complete. The stability of the finite-difference equations has not been 
considered. The determination of the step size was done according to the equation 
given in [8, 141, which is based on a stability analysis of the nonconservative system 
of equations (2.1). 

5. RESULTS 

By means of the finite-difference method described above, the flow fields around 
various body contours have been calculated. Compression zones, embedded shock 
waves, and expansion zones appear in the flow field as a function of angle of attack, 
Mach number, and body contour. Some examples of the computation are given, A 
detailed analysis of a variety of flow fields is given in [29]. Figures 7 and 8a show the 
fields of characteristics calculated from the solutions for the flows around a blunted 

FIG. 7. The characteristics for a flow field around a blunted ogive cylinder. 
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embedded shock 

\ 

\ 
0 - TI plane 

FIG. 8. (a) The characteristics for a flow field around a hemisphere cylinder; 0 Experiment [30]. 
(b) Schlierenphotograph of the flow around alhemisphere cylinder (after T. Hsieh [30]). Mm = I .4, 
a = lo”. 

ogive cylinder and a hemisphere cylinder. The Mach numbers are M, = 2.21 and 
M, = 1.4, the angles of attack are a = 20” and a: = lo”. The lengths indicated are 
normalized with the radius of the spherical nose. In Fig. 7 compression zones can be 
seen on the leeward side which occur because of the curvature jump at the junction 
between sphere and ogive (very marked) and at the ogive cylinder junction. A similar 
phenomenon occurs on the windward side; however, this is only visible in the real 
part of the field due to the extraordinary density of the characteristics and their 
reflection at the bow shock. After a short distance, the bow shock on the leeward 
side changes over to a Mach line (the shock intensity goes towards zero). In Fig. 8a, 
an embedded shock can be seen on the leeward side. The predicted contours of the 
bow shock and the embedded shock are compared with the experimental data of 
Hsieh [30] (Fig. 8b). The agreement is very satisfactory even for these low supersonic 
freestream Mach numbers. Static pressure measurements at a pointed ogive cylinder 
are given in [31]. Since, as is known, the nose form of a body has only a minor effect 
on the static pressure downstream of this nose, the experimental data [31] can be 
compared with those calculated on the spherically blunted ogive cylinder described 
above. Figures 9 and 10 show the comparison for &I, = 1.46 and angles of attack 
(Y. = Y, IO”. Both in the experiment and in theory the static pressure changes (Fig. 9) 
which occur because of reflection of the compression waves on the body surface are 
observed. Figure 10 contains also the results of a calculation done by v.d. Vyle [32] 
with the aid of Kutler’s procedure [25]. The pressure coefficient diverges from the 
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FIG. 9. Pressure distribution along the body surface, windward side (91 = 0’). I% = 1.46, 
angle of attack OL = IO”; 0, Experiment, ReD = 0.29 x lo8 [31]; -, Present theory. 

i3 
FIG. 10. Pressure distribution along the body surface, leeward side (v = r). Mm k 1.46, angle 

of attack CY = 5”; 0. Experiment, Reo = 0.29 x lo8 [31]; -, Present theory; x Theory [32]. 
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experimental data at the rear part of the body, apparently because of the enforcement 
of constant entropy. With this assumption, ignored, better results have been obtained 
[32]. The point x/D = 0 (Figs. 9 and IO) is in the tip of the ogive cylinder in the 
experiment [8, 311 (D is the diameter of the cylinder). At greater angles of attack 
{CX < 10’) and appropriately large Mach numbers, embedded shock waves arise 
in the flow around the abovementioned body, because of crossflow. 

The crossflow Mach number MO is defined by 

MO = (0” + w”)/c. 

Here u and w are the components of the velocity vector in the r- and v-directions. The 
crossflow Mach number Ma is not only a function of the variables r, g, but also a 
function of the variable z = X. For every plane x/D = const another plot was obtained 
for the lines of constant crossflow Mach number. If the lines of constant crossflow 
Mach number MO are plotted in planes x/R = const (R = radius of the spherical nose), 
the generation of a local supersonic field which ends with a shock wave of the crossflow 
due to the expansion over the cylinder can be clearly seen. Figures 11 and 12 show 
this behavior for M, = 2.21 and a: = 20” in the plane x/R = 18.5 Figure 12 shows 

FIG. 11. Lines of constant crossflow Mach number Mp in the plane x/R = 18.55. Mm = 2.21, 
a = 20”. 
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FIG. 12. Lines of constant crossflow Mach number MQ in the vicinity of the body, enlarged. 
Plane x/R = 18.55; Mm = 2.21, OL = 20”. 

the enlarged area in the vicinity of the cylinder, with the crossflow supersonic region 
limited by the sonic line marked with circles. The maximum value of Mo is 
approximately 2.5. 

If the body contour is changed by a diameter increase (cf. Fig. 13), an embedded 
shock wave arises at x/R = 18 and an expansion zone at x/R = 20 due to the dis- 
continuous derivative of body contour function. Figure 13 shows for M, = 3, 
a: = 0” the field of characteristics in the region of interest. The location of the 
embedded shock wave can be seen very distinctly. Figure 14 shows the contour of 
the bow shock and the characteristics for the flow around a blunted circular cone 
(M, = 2.97, CL= 0’). Where the sphere changes into the cone, the first derivative of 
the contour function G(x, 8) is discontinuous. The characteristics plotted on the basis 
of the difference solution show at the shoulder the expansion fan as expected according 
to theory. For all sample calculations a grid of M = 17 points in the f-direction 
and L = 19 points in the a-direction has been used. It has already been mentioned 
that the step size Ax = T has been calculated by the equation given in [14, p. 311. 
Because the step size T is a function of the flow variables u, w, c and the coordinate r 
(for fixed 01, /3, o1 , J), one obtains variable r-values along the x-coordinate. In 
connection with the calculation of the flow field around a blunted ogive cylinder with 
M, = 2.21 and 01 = 20” (Figs. 7, 11, and 12) an averaged step size of 

was obtained. For the case M, = 1.46, a = 10” (Fig. 9) it was 

58 I/29/2-4 
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embedded shock 

bow shock 

detail A 

FIG. 13. Flow field around a blunted ogive-cylinder with a 7” shoulder. Characteristics in the 
area of embedded shock. A& = 3, OL = o”, O-n-plane. 

:: bow shock ,’ 

FIG. 14. Flow field around a blunted circular cone with a sharp shoulder. Characteristics in the 
expansion zone at the shoulder. Mm = 2.97, CY = 0”. 
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6. CONCLUDING REMARKS 

This paper gives a finite-difference method for calculating three-dimensional 
inviscid supersonic flow fields. The dependent variables of equations of motion are 
used in conservative form. In this way it is possible to calculate embedded shock 
waves with at least the same accuracy as one would get using the equations of motion 
written in divergence form. The essential advantage of the system of equations used 
in this paper lies in the application of the progonka process, by means of which field 
and boundary points can be calculated with the same accuracy. The lcapability of 
the method, especially as far as the treatment of embedded shocks is concerned, is 
proved with the aid of some selected examples. The computations of the flow fields 
described in this paper (with the exception of subsonic fields in the stagnation areas) 
required a computing time of 15 to 30 min on a Telefunken TR-440 computer (the 
CDC 6600 is about four times faster). 

APPENDIX A 

The matrices s,+~/, and t,+l,2 have the following elements: 

I c-1 I 

1 ad1 - h& + 8 
I 
; 

I a& - halt2 ! / 
I a36 - ~lal~3 / 
1 (w - q) f, - S,a,9 1 

261 - al7 - t21 
-2a,a, - tsl 
-2a,a, - t,, 
2wa, - t,, 

. 
62 

ad2 - Q2& 

a25, - Sla2f2 + 8 

a3f2 - S1a2t3 

(w - 4 f2 - ha28 

6 
al& - b& 

I a2t3 - b3t2 
1 ad3 - ha35, + 8 
j (QJ - 7) f3 - ha38 

- 112 
-2&a, - t,, 

2a2 - t3, 
2a3 - b2 

2(w - rl + k13 - h2 

-t13 I -t14 0 
-2S,a, - t,, / -2&a, - I,, i 

2a, - t,, I 
26, - I,, 

- t34 

- f43 24 - t4, 

/ -t35 
I 

-2S,a,a, - t,, I -2S,a,a, - t5, ’ ) 

. 

1 -t45 
1 2ya, - t55 
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The following abbreviations were used: 

8 = a’ 4, 61 = (Y - 11, 
rl = &/2) I a 12, 62 = (Y - 21, 642) 
OJ = --Y@/P) + 253, 6, = (y - 3). 

y gives the ratio of the specific heats. The components of the inverses of tm+li2 are 

711 = 

7 12 = 

713 = 

i- 14 = 

715 = 

721 = 

722 = 

723 = 

724 = 

7 25 = 

7-31 = 

T32 = 

733 = 

734 = 

735 = 

741 = 

T42 = 

743 = 

744 = 

745 = 

751 - 

r52 = 

753 = 

754 = 
Tj5 = 

det I t ( = d = 6[6, ( 9 I2 - x ( 5 I2 + yP]. 96 ‘P 0 3 =+=gxay 0 t: 53 =C=+xa, 

0 61 E2 =s=qJxs, x = (m - bJ)- 

E3 

643) 

(A41 
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APPENDIX B 

If we select from the total of six equations Eqs. (4.2) and (4.1), the first four com- 
ponents of Eqs. (4.2) and additionally Eq. (4.1) to calculate the five unknowns 
Pm. 3 m,,e,, the system of equations indicated below is free from undefined terms of 
the type O/O which cannot be processed in a numerical computation: 

m3;m = 
o3 - emu2 

3 
01 

t6 - m3;d0 - e& 
m,i, = - 

t, 
f W) 

m l:m = i lf T - f2m2zm - t3mgim , 

pm = 
tf - emSda5 - m3;& - m2&i . 

&31 
> 

q = t,t, - t& 

u2 = t,t, - t,t< 

03 = tntar - tat, 

a4 = t*ta - t& 

05 = t,t, - &SE 

a, = t,ta - tgtc 

t, = tzltd - t31ta 7 

43 = t21te - taltb 7 

t, = &?1t3, - t31tz5 9 

ts = t,ltf - t31tc 9 

t, = t21t, - t41to > 

tu = t2,th - t4,tb , 

t a = 023 - t22f2 3 

tb = ‘td24 - t22t3 2 

to = &fz - t22fts 

ta = 033 - t32k2 3 

te = 034 - t32e3 3 

tf = &f,* - t32fT5 

t, = t21t45 - t41t25 9 

tn = t21ti - t41tc 9 

b = t21tk - PI;&, , 

&V = t21tl - pl:mtb 3 

t7 = t21p5;m - p1:nJ25 9 

L = wo - tL1;mtc 9 

t , = &43 - t4252 7 

th = &44 - t426 , 

ti = &f$ - t42fi*, 

tk = &~3:m - ~2~35‘2, 

tl = &4;m - ~2:m't3 9 

to = &Ln - t%nfiu. 
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The tij (i, j = l,..., 5) are the components of tm+1,2 , Eqs. (Al). From Eqs. (4.2) we 
obtain, further, 

f h;/;/z’ = n+(j/z) n+(i+1) - sm+1/2 II rnf1.i . 033) 
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